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SUMMARY

II

Il This document treats a variety of topics which must
be considered by the designer of a star sensor system. The
intent of the document is to consolidate these factors and re-
late their interdependence to provide an orderly design pro-
cedure. An attempt is made to relate the star sensor de-
sign to its specific application, whether satellite or earth-
based. Among f. -; t. pics discussed are general systems
considerations, star eharacteris tics, atmospheric effects,I optics and photometry, and available sensor types. The
prospective designer is alerted to avoid the many pitfalls
which he might encounter. Specific systems concepts are

LI not discussud since the referenced literature serves to ac-
complish this in an adequate manner.
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1. GENERAL SYSTEMS CONSIDERATIONS

Star sensors fall into two general categories, i. e.,

trackers and mappers. A star tracker is a sensing system
which detects, locks onto and follows a specific star. A
star mapper does not lock onto a specific star but obtains
a picture of a section of the heavens or celestial sphere. A

Ustar tracker is most often used in a closed loop system.
Star mappers most often are operated open loop where only
the measure of a particular position rather than its control
is desired. The star tracker or mapper may be either gim-
bal mounted or strapped-down. This is very much mission
dependent. For example, satellite applications usually em-
ploy a strap-down mounting, An -., rth-based application
such as a shipboard or aircraft ins allation most often would
utilize a gimbal mounting.

The actual star sensing element can be any of a num-

ber of devices, but most frequently photomultiplier tubes,
image dissectors, image orthicons and a variety of vidicons.
Once again the detector type which one selects is very much

mission dependent. For example, a photomultiplier type

star sensor, whether it is used as a tracker or a mapper,
would not be a good candidate for a three-.axis gradient satel-
lite. Such a mission requires a star sensor which has some

inherent scan capability. Since electroijc scan is preferred
over a mechanical .nirror scan system, a TV camera tube

type sensor becomes more desirable. If on the other hand
one is dealing with a spin stabilized satel'iit, a ph.otomulti-
plier sensor makes good sense. The phot(multiplier re-

pquires much less sophisticated electronics than does a cam-

era tube.

In space applications it is always a good policy to

maintain maximum simplicity commensurate with the mis-
sion requirements and the operational parameters imposed1by the spacecraft.

i-
-13- Preceding page blank
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U Figure 1 is a functional block diagram of a star

tracker/mapper. Figure 2 is a diagram s howing a typical
satellite- Earth orientation.
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II Fig. 2 DIAGRAM OF SATELLITE-EARTH ORIENTATION
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02. STARS

99 Stars are conventionally catalogued and charted in
terms of the familiar astronomical coordinates system which
uses the equator as a base plane. In a geocentric system
Right Ascension is measured eastward from the vernal
equinox along the celestial equator to the hour circle of the
star, and is expressed in hours (or in degrees). Declina-
tion is positive or negative (North or South) and is mea-
sured in degrees from the celestial equator along the hourID circle to the star. Figure 3 illustrates the geometry of this
system. Figure 4 is a navigational star chart in equatorialgeocentric coordinates.

II Stars are divided into spectral classes and magni-
tudes according to their spectral radiation and the intensity
of the received radiation.

SPECTRAL TYPES

The spectral distribution is used to assign to a star
fl a temperature based on fitting a blackbody radiation curve

to the measured spectrum. There are two primary temper-
ature scales. The first scale gives the color temperature
of the stars, and is defined as the temperature of a blackbody
radiating with the same spectral distribution within the vis-

ible region as that observed from the star. The second
scale gives the effective temperature of the stars, and is
defined as the temperature of a blackbody radiating with
nearly the same spectral distribution over the entire spec-
trum as that observed from the star. Figure 5 shows the
blackbody radiation curves for various temperatures.

- -17 -
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The visual color temperrx-Are for the main sequence
stars and the theoretical wavelength of maximum radiation
are:

Color Calculated Wavelength
Temperature of Maximum Radiation

Type (degrees K) (microns)

BO 38 000 0.076

AO 15 400 0.170

FO 9 000 0.320

GO 6 700 0.432

KO 5 400 0.545

MO 3 800 0.765

1The effective temperatures are based on the total
radiant flux and result in a cooler temperature because a
star is not a classic radiator especially at the shorter wave-
lengths.

Effective Calculated Wavelength
Temperature of Maximum Radiation

Type (degrees K) (microns)

BO 22 000 0.132

AO 10 700 0.271

i FO 7 400 0.393

GO 5 900 0. 491

KO 4 900 0.592

MO 3 600 0.805

Figure 6 illustrates stellar type spectral distribu-

tion based upon color temperature. Figure 7 illustrates
stellar type spectral distribution based upon effective tem-
perature.

-21-
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Figure 8 shows the Hertzsprung-Russell diagram.
It is to be noted tikat 99% of the known stars are contained
within the six letter classification shown for the main se-
quence stars. Each class is further divided into 10 subdi-
visions, from 0 to 9 in order of decreasing temperature.
Shown on the same diagram is the relative luminosity of the
stars in terms of the Sun.

The full spectral class designation of a normal star
consists of three items: an upper case letter and an arabic
numeral to denote the temperature class, and a roman nu-
meral to denote the luminosity class. For example, a CMa
(Sirius) is AlV. In addition to the standard spectral nota-
tion, lower case letters may be added to show certain non-
standard features in the spectrum(see Fig. 8).

Astronomers also categorize stars by a wideband
UBV photometric system. The designations U, B and V
each represent a filter with a given spectral distribution as
sensed with a photomultiplier tube having an S4 (blue-
sensitive) spectral characteristic. The ratio of any two of
these filtered outputs from a particular star is representa-
tive of a given color temperature. This photometric system
is not particularly useful for star tracker/mapper design.

MAGNITUDE SCALES

Several magnitude scales are used in astronomy.
The brightness to magnitude conversion is constant for all
systems, but the spectral response of the detectors is dif-
ferent. Some detectors are more sensitive to the blue col-
ors and see blue stars as the brighter stars; conversely,
red-sensitive detectors detect more of the energy of the
cooler red stars. The common reporting scales are the
photographic and the photovisual; the reported magnitudes,
photographic and photovisual, are indicated with the symbols
mpg and mpv respectively. The photovisual and standard
eye scales are often used interchangeably although they do
not exactly match. Two additional, magnitude scales are the

- 24 -
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bolometric (mbol) and the radiometric (mrad). The bolomet-
ric magnitude scale is based on the total radiation from the
star -ultraviolet, light, radio, heat, etc. - irrespective
of wavelength. The radiometric scale is based on the total
radiation received through one air mass, i. e., at the zenith.

The conversions from one scale to the other are de-
fined as follows:

m - mbo I  BC (bolometric correction)

mpv - mrad = HI (heat index)

m - M = CI (color index)pg pv

The standard bolometric irradiance is 2.27 x 10' 12

watts/cm 2 and this defines the zero bolometric star. The
effective temperature describes a smoothed spectral distri-
bution of the star irradiance.

A short table containing the bolometric corrections
for the main sequence stars is shown in Table 1.

Absolute magnitude of a star is a measure of stellar
lumininosity and is defined as the apparent magnitude of a
star if it were placed at the standard distance of 10 parsecs
(32. 6 light years). Photographic and visual absolute magni-
tudes are symbolized respectively by Mp and M V.

Table 2 gives a listing of the visual magnitudes of
the 25 brightest star. Figure 9 presents the Hertzsprung-
Russell diagram for the same celestial bodies. Figure 10
illustrates the relationship between stellar radiant flux
(watts /cm 2 ) and apparent visual magnitude in addition to de-
fining the stellar distribution as a function of magnitude.

-26 -
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Table 1

Star Type Effective Temperature
and Bolometric Correction

Effec tive Bolome tric

Type Temperature Correction

05 35 000°K 5.0

B0 22 0000 K 2.9

B5 14 000°K 1.4

AO 10 7000K 0.60

A5 8 5000K 0.20
U

F0 7 4000K 0.00

F5 6 5000K 0.00

GO 5 9000K 0.05

G5 5 5000 K 0.10

KO 4 9000K 0.17

H K5 4 2000K 0.6

MO 3 600 0 K 1.2

M5 2 8000K 2.4

i2Ui

I]



VIK JOHNS HOPKIN UHMIRY
APPLIED r'HYSICS LABORATORY

UN-Vg" 10ft"C. MAMfAMO

Table 2

The 25 Brightest Stars

Appnrent I Absolute
Magnitude Spectral Magnitude

Celestial Body Proper Name m j Type M

afCMa Sirius - 1. 47 Al V +0.7

atCar Canopus -0. 71 FO lb -5. 5

CeCen Rigil Kent -0.27 G2 V +4. 6

a Boo Arcturus -0. 06 K2 Illp -0. 3

a Lyr Vega +0.03 AO V +0.3

P Ori Rigel 0.08 B8Ia -7.0

aAur Capella* 0.09 G8 111 +0. 12
GO 111 +0.37

aCMi Procyon 0.34 F5 IV-V +2. 8

ofEri Achernar 0.49 B5 17 -1.3

P Cen Hladar 0.61 BI 111 -4. 3

a Aql Altair 0.75 A7 IV- V +2. 1

a'rTau Aldebaran 0.78 K5 111 -0.2

atCru Acrux 0.80 BI IV -3. 8

a Ori Bet'elgeuset 0. 851 M2 lb -5. 5

otSco Antares 0.92 MI lb -4.5

a Vir Spica 0.98 Bi V -3.2

P Gem Pollux 1.15 K111II +0.7

CfPsA Fomalhaut 1.16 A3 V +1. 8

a Cyg Deneb 1.26 A2 la -7.0

P Cru Mimosa 1.28 BO IV -4.0

ccLea Regulus 1. 33 B7 V -1.0

(CMa Adhara 1.42 B2 11 -5.0

y Or Bellatrix 1.61 B2 111 -4. 1

X Sco Shaula 1.61 B2 IV -.

P Tau El Nath 1.64 B7 111 -3.0

*Binary
tVariable
*Mean

-28-
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3. EARTH-BASED VERSUS SPACE-BASED SYSTEMS

f11 Earth-based systems usually have no severe limita-
tions placed upon weight, volume, iLnagnetic moment, com-

57 ponent motion, etc. In space applications weight, volume,
power consumption, etc. are always of great importance.
The use of magnetic materials is usually discouraged to the
limit of possibly 100 pole- cm magnetic moment. The use
of moving components is avoided wherever possible to pre-
vent the introduction of mechanical moments or the need for
compensating systems.

An additional factor to be considered in spacebornejsystems is the influence of the radiation particle environ-
ment. For a synchronous altitude of some 23 000 miles,
the following environment may be encountered:

Three-year
Time Integrated

Particle Energy Integral Flux

Particle (eV) (Particles /cm 2 )

Electrons 1.6 x 106 3 X 1010

A 14 x 10 3 x 10 5

Protons 3 X 107 3 x 108

0.1 x 106 to 5 x 106 3 x 101 5

The above particles will be due to the outer Van Allen Belt.

-The proton flux due to solar flares is estimated to
be as follows:

7 12
Protons of 1.2 x 10 eV energy at 2 x 10 protons!
cm

2 .

31
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The tracker will be capable of survival in this type environ-
ment provided a high-purity fused silica is used as a lens
glass or as a protective cover plate over standard optical
materials.

ATMOSPHERIC EFFECTS

Attenuation

In spaceborne applications of star sensors, the de-
signer is not particularly concerned about the effects of at-
mospheric attenuation. However, in earth-bound star sens-
ing, the atmospheric attenuation can be quite significant and
limiting. Figure 11 illustrates the effect of one air mass,
i. e., looking to the zenith, as a function of wavelength in
the visible region.

Refraction

Refraction of light is the change in the direction of
a light ray as it passes from one medium to another. The
change is in the direction of the normal to the interface when
the ray enters a denser medium. Since the density of the
atmosphere decreases with altitude, a star will appear
closer to the zenith than to its actual position. Localized
density anomalies, moving with the low-altitude winds,
cause the apparent position of a star to move through small
angles around a median position. In a photograph, a star
image appears as a disc due to the random image motion.
The brightness of the image also fluctuates over short time
intervals. The brightness fluctuations appear to be produced
by density anomalies moving with the high-altitude winds.

Table 3 gives a listing of the refractive corrections
for zenith angles at sea level. Table 4 shows refraction
corrections scaled for altitude.
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III Fig. 11 ATMOSPHERIC TRANSMISSION THROUGH ONE AIR MASS
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Table 3

Refraction Corrections for Zenith Angles at Sea Level

Apparent
Zenith
Angle True Zenith Angle

Degrees Degrees Minutes Seconds

90 90 35 21

85 85 9 51

80 80 5 18

75 75 3 34

70 70 2 38

65 65 2 4

60 60 1 41

50 50 1 10

40 40 0 49

30 30 0 34

20 20 0 21

10 10 0 10

0 0 0 0
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Table 4

Refraction Corrections, Scaled for Altitude of Observer

Refraction
Altitude Pressure Temperature Scaling

(Kin) (mm Hg) (°C) Ratio

J 0 760.0 +15 1.000

5 405.0 -18 0.589

10 197.0 -50 0.330

15 90.7 -59 0.172

20 42.0 -59 0.084

30 9.0 -48 0.041

LScintillation
The rapid changes in intensity that are independent

of image motion or size are called scintillation. The at-
mospheric effects responsible for scintillation occur above

fl the troposphere and are diffraction effects. The amplitude
of the scintillation is inversely proportional to the telescope
aperture. The image of a planet disc does not scintillate as
rapidly or as noticeably as a star image because the scintil-

lation of one part of the disc is out of phase with the scintil-
lation of another part having a slightly different air path.

iThe amplitude of the scintillation increases with an
increase in zenith angle. From zenith angles of 00 to 80'
of arc, the scintillation amplitude is proportional to the se-
cant of the angle, i. e., to the air mass. The resulting vari-
ation from the average brightness may be more than 35% for
apertures less than five inches. The frequency of the scin-
tillation decreases with an increase in zenith angle. Near

the vertical (;0 ° zenith angle), alternate bands of light and
Ii shade can produce scintillation frequencies as high as 1000

Hz. Near the horizon (- 900 zenith angle), the scintillation
frequency can be as low as 5 to 10 Hz.
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Shimmer

Shimmer, or image motion, is the random high fre-
quency displacement of an image around the mean position.
The instantaneous position may differ from the mean posi-
tion by as much as 20 or 30 seconds of arc for telescope
apertures less than four inches in diameter. The shimmer
increases with an increase in the zenith angle, and de-
creases as telescope aperture increases.

BACKGROUND EFFECTS

The dominant background effects are different for
spaceborne and earth-bound star sensors. In spaceborne
applications, one is concerned with star background illumi-
nation such as the Milky Way, and lunar, solar and Earth
glow interference. In an earth-bound application one is con-
cerned with all of these plus the atmospheric airglow. Table
5 gives a breakdown of the sources contributing to the night
sky illuminance. These sources are not uniformly distrib-
uted and may vary quite widely from the average values
given. The galactic light results from the Milky Way. The
zodiacal light is reflected sunlight scattered from a cloud
of dust particles surrounding the sun that are confined to a
region 250 to 50* wide centered in the ecliptic plane. The
airglow intensity is most severe when looking near the hori-
zon. The aurora occurring in the polar regions is brighter
than the night airglow. The aurora arises from particle
bombardment of the upper atmosphere and produces a spec-
trum that is brighter than the airglow spectrum. The aurora
could interfere with the operation of a star tracker. Table
6 gives the night sky radiance as a function of visible wave-
length.
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Table 5

Sources Contributing to Night Sky Illuminance

Source Percent Contribution Range

Starlight 25-30
Galactic 7-10
Zodiacal 7-15
Airglow 45-60

Table 6

Night Sky Radiance

Spectral Radiance, Wavelength,
10-10 watt cm - 2 sterad - 1 micron - 1  microns

1.4 0. 32

1.1 0.36

1.3 0.40

2.0 0.45

2.0 0.50

3.0 0.55

5.0 0.60

6.0 0.65
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4. OPTICS AND PHOTOMETRY

2THE OPTICAL SYSTEM

FThe purpose of the optical sub-system in a star

tracker/mapper system is to collect and focus the stellar
flux onto either the detector directly, or to focus the flux
on a reticle or chopper located in or near the focal plane
from which the flux is modulated and then transferred to the
detector.

Major design considerations are:

* Aperture size
• Angular field of view
e Optical resolution
* Aberration9 Distortion
* Spectral transn-ission efficiency
e Compactness ani weight of optical design
* Ease of fabrication and alignment
* Electro-mechanical means used for tracking/

mapping

Types of Optical Systems

There are three types of optical systems employed

in astronomical work: the reflecting, the reiracting, and
| the hybrid or catadioptric (refracting-reflecting) system.

t The Cassegrain type telescope, which employs a convex
secondary mirror on the optical axis, is a commonly used
reflective system for celestial systems. Several variations
of the Cassegranian system are possible, which differ con-
siderably m their aberations for off-axis images and their
ease of fabrication and alignment. Where refractive ele-
ments are added, Une system becomes a hybrid.

*11 39 -
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The principal advantages of the pure reflective over
the refracting system are high transmission efficiency
throughout broad spectral regions, small focal ratios or F
numbers yielding a more compact optical system, large
aperture size with relatively small weight and volume, free-
dom from chromatic aberration and good imagery on the op-
tical axis where a narrow field of view is employed.

The major disadvantages of the pure reflective over
the refracting system are its inability to cover more than a
small angular field of view (10 or less), high sensitivity to
stray radiation and thermal effects, loss of primary mirror
area caused by secondary surface blockage, and finally lack
of mechanical rigidity.

The hybrid system retains many of the advantages of
the reflecting system and reduces to a large extent the lim-
itation of a narrow field of view. The addition of a cor-
rector plate or lens in front of the primary mirror yields
good resolution over moderate fields of view even with small
F numbers.

Resolution

An important consideration in the selection of a suit-
able optical system is the optical resolution and its effect
on flux density distribution in the focal plane.

The image of a point focused by a perfect lens is a
minute pattern of concentric and progressively fainter rings
of light surrounding a central dot, the whole structure be-
ing called the Airy disk. The Airy disk of a practical lens
is small, and its linear radius in microns is given by the
following formula:

R 1.22 XFD

where X = wavelength of light, (in microns)
F = focal length of lens, in inches
D = objective aperture, in inches
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Rayleigh found that two adjacent and equally bright
stars can just be resolved if the image of one star falls
somewhere near the innermost dark ring in the Airy disk of
the other star. This distance d, in radians or in seconds

fof arc, is the angular resolution of the lens. A practical
value of d with telescopes used for visual observation (at
X- 5600 1) is

d =1. 22 [D(in cm) radians, or d [ Dch] seconds of arc,

where D is again the objective aperture (see Fig. 12).

However, Rayleigh criterion does not adequately de-

scribe the distribution of stellar flux in the focal plane, and
therefore does not provide a complete description of the op-
tical system resolution. Figure 12 gives the minimum an-
gle of resolution as defined by the Rayleigh criterion and
also shows the relationship between the resolving power of

an objective and the aperture diameter for various star en-
ergy percentages. It is obvious from Fig. 12 that, .if 95%
of the stellar energy is desired for our tracking/mapping
system, the angular size of the detector or of the reticle

[(from which the flux is modulated and then transferred to the
detector) in the focal plane must be fully seven times larger
than that specified by Rayleigh's criterion.

IFocal length

B The required optical focal length is calculated from
the angle subtended by the star field of view (FOV) to be
covered and the physical size of the detector element used,
that is

detector size
Optical focal length 2 tan(J FOV)"

4PHOTOMETRY

The effective irradiance from a star as seen by a
ii standard observer may be readily computed from the follow-

~ing formula:
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Fig. 12 RELATIONSHIP BETWEEN THE RESOLVING POWER OF AN
OBJECTIVE AND THE APERTURE DIAMETER FOR VARIOUS
STAR ENERGY PERCENTAGES
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h 1= 1 0 (2.51) v watts/cm2

where:

13 = watts/cm2 for a "0" visual magnitude AO star

1= 3.1 x 10- 13 watts/cm2

mv = visual magnitude.

Ii The total available effective power P from the star
that is intercepted and passed through the lens is given by

U P 2.43 x 10-13 gD 2 (2 . 5 1 )v- m

13 where:

13 optics efficiency

D = objective diameter, in centimeters.

11 ,Based upon the use of a 2-inch (5 cm) aperture ob-
jective with an efficiency P of 0. 65 and a +4 visual magnitudeU AO star, the computed value P is 9. 90 x 10-14 watts.

Figure 13 gives the available stellar power inter-
cepted by an objective of aperture D for various star visual
magnitudes.

iSPECTRAL PROPERTIES

Since the star sensor's spectral response does not
match that of the eye, equal visual magnitude stars will not,
in general, give equal outputs. It is necessary to relate the

i sensor's response to different spectral classes of a given
visual magnitude, because stars are normally tabulated ac-
cording to visual magnitude and it is convenient to be able
to speak tie same langaage.
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Because it is essential to relate the composite star
:mapper spectral characteristics to some measurable lab-

oratory photometric quantities, calibration of the sensor in
the laboratory is performed with a 2870°K light source, al-
though this is significantly different from the effective tem-
perature of the stars.

Expressed mathematically, the star sensor's spec-
tral dependence is given by

pf W2 (X)Rs(?)dX f Wl(X)RE(X)dX

f Wl(X)Rs(X)dX f W2(X)RE(X)dX

0 0

Bwhere:
X relative response of star sensor to a source of

spectral characteristic W2 compared to response
to a source of characteristic W1

W1 (X) = power spectral density of source 1 (watts/
unit wavelength)

B W2 (X) power spectral density of source 2 (watts/

unit wavelength)

R s(X) = spectral response of star sensor (amperes!watt)

RE(X) W relative sensitivity of eye at wavelength X.

By performing the indicated computations, it can be shown
that the sensor's response to an A0 star relative to its re-
sponse to a KO star is 1. 30. This ratio corresponds to a
change in star magnitude of 0. 3. Hence, given two stars of
types A0 and KO with equal visual magnitudes, the sensor's
output will indicate a difference of 0. 3 magnitude. Similarly,In:_ the sensor's response to a KO source relative to a 2870K
source is computed as 0.955.

j1 -4-



THI JOINS HOPKINS UNIVERSITYLII APPLIED PHYSICS LABORATORY

SiI.VCf SPRING. MARYLAND

5. STAR SENSOR DETECTORS

Detectors suitable for star sensing applications are
generally of the quantum type, in which either electrons are
ejected by the absorbed quanta (photoemissive) or charge
carriers are created within the material (photoconductive,
photovoltaic).

1For the most part photoemissive detectors are uti-
lized. These include photomultipliers, image dissectors,
image orthicons, image intensifiers, correlatrons and cer-
tain intensifier type vidicons. The standard vidicon utilizes
a photoconductive retina. Its spectral response runs from
0. 4 to 1. 1 microns. Figure 14 illustrates the spectral char-
acteristics of the photoemissive sensors most often used in
star sensing applications.

PHOTOMULTIPLIERS

1In a photomultiplier, photoelectrons are emitted by
quanta of light impinging on the photocathode. The photo-
electrons being emitted in a vacuum are electrostatically
directed into a secondary multiplier which consists of a
number of dynodes. Each dynode has a secondary emitting
surface. Primary photoelectrons striking the first dynode
cause two or more secondary electrons to be emitted for
every primary electron. These secondary electrons are fo-
cused to strike the second dynode where the process is re-
peated. After about 10 to 14 dynodes the -mplified current
is collected on an anode plate or grid. The total gain may

jrange from 103 to 107 at a bandwidth of up to 1 GHz. Figure
15 illustrates some typical photomultiplier layouts.
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Fig. 14 SPECTRAL RESPONSE OF PHOTOEMISSIVE SURFACES
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IMAGE DISSECTORS

The image dissector is a television camera tube hay-
ing a continuous photocathode on which is formed a photo-

electric emission pattern that is scanned by moving its elec-
tro-optical image over an aperture.

Principle of Operation

From the optical image focused on the photocathode
(Fig. 16) an electro-optical image is derived that is focused
in the plane containing the aperture. Two sets of scanning
coils sweep this image over the aperture. At any instant,
only the electrons entering the electron multiplier through
the aperture are utilized. The output signal is taken from
the multiplier collector.

FOCUSING COIL

, . ,A A X~ X 7 2-VERTICAL IDEFLECTING COILS
UVX XY Y'V YY. " X V yVy'V/vf 77 HORIZONTAL

TRANSLUCENT ---e0, *0o0o0 eeo -1 s

PHOTOCATHDE O *0OO 
0 0 MULTIPLIER OUTPUT

ACCELERATING RINGS TIPER
1Tl yk4. XAXX)<"(yy A APERTURE

ANODE

Fig. 16 IMAGE DISSECTOR SCHEMATIC REPRESENTATION

No storage means are used, and therefore, the dis-

sector is not suitable at very-low light levels. But the out-
put signal is proportional to the light, free from shading
and, within reasonable limits, independent of temperature.
The electron optics of the tube are usually designed for
unity magnification. The aperture area determines the re-
solution.
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Properties

The dissector has the following unique and rather
unusual properties which should be taken into consideration
when selecting an appropriate camera tube for a specific ap-
plication:

J# Non-Storage

Because no storage is involved, the scan rate on a
dissector can be varied at will without changing the signal
current amplitude. Dual or :.iultiple scan modes can be
adopted, in which an earlier large raster scan is replaced[by a smaller scanned area for image analysis or image
tracking.

fl High Resolution

Image dissectors achieve paraxial resolutions closely
predictable on the basis of selected electron beam defining
aperture size. For example, in magnetically focused tubes,
contrast ratios as high as 40 percent have been observed ex-
perimentally with 0. 001 inch diameter apertures at 1600 TV
lines/ inch resolving power (800 line pairs /inch). These
high resolutions are quite compatible with the ultimate lim-
its set by the emission energies of the photoelectrons for
tubes of this type, as established by G. Papp of ITTIL (IRE.UTr. on Nuclear Science, Vol. NS-9, ,o. 2, April 1962. p. 93).

Off-axis resolution approaching the paraxial perform-
ance can be achieved with a moderate degree of dynamic fo-
cusing only in magnetically-focused varieties. For electro-
statically focused dissectors, off-axis loss of resolution,
even with dynamic focusing, is appreciable.

& Linearity

k The basic multiplier phototube operating principle
used in image dissectors is linear over many orders ofj j magnitude, at least 4 to 5 orders in normal usage. The

t .1 -51 -
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image dissector is therefore particularly useful where a
wide dynamic range of signal inputs with linear response is
encountered. Re-adjustment of the multiplier gain by alter-
ing the applied operating potentials can produce even greater
dynamic ranges.

Response linearity from one portion of an input im-
age to another portion of the same image is limited to some
extent, as it would be in any camera tube, by internal light
reflections within the camera tube envelope and variations
in sensitivity of the photosensitive film. Dissectors with
internal optical trapping can be supplied on special order.

* Noise

Noise in an image dissector camera normally arises
from three readily identified sources: dark emission from
the photocathode, background lighting on the photocathode,
and the signal flux itself. The multiplier gain is normally
high enough so that othernoise sources, such as amplifier
noise, etc., are negligible. With nearly all photocathodes
except infrared sensitive types the dark emission noise is
also negligible, so that the dissectors, in general, operate
either under a background-noise limited or a noise-in-signal
limited condition. Photon fluctuations of the flux input,
modified by the quantum efficiency of the photoemissive con-
version process at the photocathode, are then observable in
the dissector. For location of images on a dark background,
as in star tracking, the dissector may therefore be more
sensitive than expected because of the almost total absence
of dark noise in the nonsignal areas.

* special Apertures

Dissectors are readily adapted to the examination of
specialized portions of the input image using appropriately
shaped defining apertures. Apertures can range from a
long slit aperture for examining signal line scans of a spec-
trum to such complex apertures as pin-wheels, etc., used
with special scan modes to obtain additional picture infor-
mation or discriminate against: certain input patterns.
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9 Simple C.erating Theory

KThe operational theory of the dissector is simple
and straightforward, making it possible to predict, a priori,
what the resulting system capabilities will be. This is use-
ful to the system designer and in the system check-out.

[. Reliability

The dissector is a simple, rugged, reliable device
without a thermionic cathode, which limits its lifetime and
consumes operating power. Shelf life is many years and
operating life is comparable, unless excessive input illumi-
nation occurs for long time periods. Momentary exposure
to sunlight or even the sun's image does no harm.

[* Fast Turn On

The dissector is ready to operate at full efficiency
as fast as the associated circuitry can be activated.-

* Scan Drive

The dissector is adaptable to both magnetic and elec-
trostatic deflection, although magnetic deflection has proven
to be more readily adaptable to low power transistor drive
circuitry. If fast fly back or fast random access is not re-
quired, a dissector with magnetic scan can supply largeBamounts of picture information at high output signal levels,
with a minimum of total required system power.

e Spectral Response

This includes all regions for which suitable photo-[cathodes are available and therefore extends from the near
infrared to the extreme ultraviolet region.

* Raster Edge Effects

*1 Unlike such beam scanning tubes as the image orthi-
con and vidicon, the dissector has no scanned raster area
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surrounded by an uncharged unscanned area. As a result
no edge effects are encountered in the dissector resulting
from potential di ,!ontinuities at the raster edge and show-
ing up as abnorrr.v,1 signal amplitudes along all raster edges
as observed in image orthicons and vidicons. A small ras-
ter of for example only 5 or 6 short scan lines can be lo-
cated anywhere on the dissector sensitive area, with each
scan line, even at the edges, contributing proper signal am-
plitudes.

VIDICON

This type of star sensor has been used on almost
every satellite containing a TV camera including the DODGE
satellite.

The vidicon is a small television camera tube that
is used primarily in industrial television and studio film
pickup because of its 600-line resolution, small size, sim-
plicity, and spectral response approaching that of the human
eye.

HORIZONTAL AND VERTICAL FOCUSING ALIGNMENT
DEFLECT L COIL

jGRID 2 CATHODE

GLASS FACEPLATE I
GRID4 I [

SIGNAL ELECTRODE-JI U
AND PHOTO- I '

CONDUCTIVE LAYER ZEE=

SIGNAL ELECTRODE GRD
OUTPUT I3GD1

Fig. 17 VIDICON SCHEMATIC REPRESENTATION

As shown in Fig. 17, the tube consists of a signal
electrode composed of a transparent conducting film on the
inner surface of the faceplate; a thin layer (a few microns)
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of photoconductive material deposited on the signal electrode;

a fine mesh screen, grid 4, located adjacent to the photo-

conductive layer; a focusing electrode, grid 3, connected
to grid 4; and an electron gun.

Principle of Operation

Each elemental area of the photoconductor can bE'
likened to a leaky capacitor with one plate electrically con-
nected to the signal electrode that is at some positive volt-
age (usually about 20 volts) with respect to the thermionic
cathode of the electron gun and the other plate floating ex-
cept when commutated by the electron beam. Initially, the
gun side of the photoconductive surface is charged to cath-
ode potential by the electron gun, thus leaving a charge on
each elemental capacitor. During the frame time, these
capacitors discharge in accordance with the value of their
leakage resistance, which is determined by the amount of
light falling on that elemental area. Hence, there appears
on the gun side of the photoconductive surface a positive-
potential pattern corresponding to the pattern of light from
the scene imaged on the opposite surface of the layer. Even

pthose areas that are dark discharge slightly, since the dark
resistivity of the material is not infinite.

The electron beam is focused at the surface of the
photoconductive layer by the combined action of the uniform
magnetic field and the electrostatic field of grid 3. Grid 4
serves to provide a uniform decelerating field between it-
self and the photoconductive layer such that the electron
beam always approaches the surface normally and at a low
velocity. When the beam scans the surface, it deposits
electrons where the potential of the elemental area is more
positive than that of the electron-gun cathode and at this mo-
ment the electrical circuit is completed through the signal-
electrode circuit to ground. The amount of signal current
flowing at this moment depends upon the amount of discharge
in the elemental capacitor, which in turn depends upon the
amount of light falling on this area. The signal polarity is
such that highlights in the scene swing the video-amplifier
input negative.
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Alignment of the beam is accomplished by a trans-
verse magnetic field produced by external coils located at
the base end of the focusing coil.

Deflection of the beam is accomplished by the trans-
verse magnetic fields produced by external deflecting coils.

Vidicon Operating Considerations

The temperature of the faceplate of the tube should
never exceed 600C in either operation or storage. As "he
temperature increases, both the signal output current and
the dark current (current that flows when the photoconduc-
tive surface receives no light) increase; however, the dark
current increases faster and shading (unequalness of dark
current at different points on the surface) in the output sig--
nal current becomes a serious problem. Further, as the
signal-electrode voltage is increased, the signal output
current- to-dark-current ratio decreases, thus increasing
the shading problem.

Shielding of both the signal electrode and signal load
from external fields is highly important.

A blanking signal should be furnished to grid 1 or to
the cathode to prevent the electron beam from striking the
photoconductive surface during retrace of the horizontal and
vertical sweeps.

Vidicon Signal and Noise

Since the vidicon acts as a constant-current genera-
tor as far as signal current is concerned, the value of the
load resistor is determined by band-pass and noise consid-

erations in the input circuit of the video amplifier. Where
the signal current is less than 1 microampere and the band
pass is relatively wide, the principal noise in the system
is contributed by the input circuit and first stage of the
video amplifier.
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IIn addition to the standard vidicon mentioned above,

there are a number of other more sophisticated types. One

is the SILICON TARGET VIDICON which functions similar
to the standard tube discussed above. The silicon target

vidicon uses a matrix of silicon diodes in the target. This

tube is approximately 100 times more sensitive and is not

susceptible to solar damage. Other vidicon types are Lhe
SEC (Secondary Electron Conductivity) vidicon and the SIT
(Silicon Intensifier Target) vidicon. Both of these tube types

employ an imaging section in front of the vidicon target. In
both cases the light signals are detected by a photoemissive
thin-film semi-transparent photo-cathode. It is then an
electron image rather than a photon image that impinges
upon the vidicon target.

B IMAGE ORTHICON

The image orthicon is a television camera tube hav-

ing a sensitivity and spectral response approaching. that of
the eye. Commercially acceptable pictures can be obtained
with incident illumination levels of 10 foot-candles.

BAs shown in Fig. 18, the tube comprises three sec-

tions: an image section, a scanning section, and a multi-

8plier section.

TRANSLUCENT TARGET HORIZONTAL AND VERTICAL FOCUSING ALIGNMENT 5STAGE

PHOTOCATHODE DEFLECTING COILS COIL COIL MULTIPLIER

ACCEERAOR DCELRATO GRD4 GID3GRIDANDMULTIPLIER

i ELECTRON/

I GUN

,....:--...... SC NN, G .... ,'

-7 ACCELERATOR DECELERATOR GRID 4 GRID 3 GRID 2AND MULTIPLIER

. GRID 6 GRID 5 DYNODE I OUTPUT

Fig. 18 IMAGE ORTHICON SCHEMATIC REPRESENTATION

J 5
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Principle of Operation

From the light image focused on the photocathode,
an electron image is derived that is accelerated to and mag-
netically focused in the plane of the target. These primary
electrons striking the glass target (thickness of the order
of a ten-thousandth of an inch and a lateral electrical resis-
tivity of between 3 X 1011 and 1012 ohm-centimeter) cause
the emission of secondary electrons that are collected by an
adjacent mesh screen held at a small positive potential with
respect to target-voltage cutoff. The photocathode side of
the target thus has a pattern of positive charges that cor-
responds to the light pattern from the scene being televised;
since the glass target is very thin, the charges set up a sim-
ilar potential pattern on the opposite or scanned side of the
glass.

In the scanning section, the target is scanned by a
low-velocity electron beam produced by an electron gun.
The beam is focused at the target by means of the axial mag-
netic field of the external focusing coil and the electrostatic
field of grid 4. The decelerating field between grids 4 and 5
is shaped such that the electron beam always approaches
normal to the plane of the target and is at a low velocity.
If the elemental area on the target is positive, then elec-
trons from the scanning beam deposit until the charge is
neutralized; if the elemental area is at cathode potential
(i. e., corresponding to the black picture area), no elec-
trons are deposited. In both cases the excess beam elec-
trons are turned back and focused into a 5-stage signal mul-
tiplier. The charges existing on either side of the target
glass will conductively neutralize each other in less than one
frame time. Electrons turned back at the target form a re-
turn beam that has been amplitude-modulated in accordance
with the charge pattern of the target.

Alignment of the electron beam is accomplished by
the transverse magnetic field of the external alignment coil.
Deflection of the beam is produced by the transverse mag-
netic fields of the external horizontal and vertical deflecting
coils.
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In the multiplier section, the return beam is directed
to the first stage of the electrostatically focused, 5-stage
multiplier where secondary electrons are emitted in quanti-
ties greater than the striking primary electrons. Grid 3 fa-
cilitates a more complete collection by dynode 2 of the sec-
ondary electrons from dynode 1. The gain of the multiplier
is high enough that the limiting noise in the use of the tube
is the random noise of the electron beam rather than the in-
put noise of the video amplifier.

fJ Orthicon Operating Considerations

The temperature of the entire bulb should be held

between 45 and 60'C since low target temperatures are
characterized by a rapidly disappearing "sticking picture"of opposite polarity from the original when the picture is

Emoved; high temperatures will cause loss of resolution and
damage to the tube.

[An overall potential of 1750V is necessary to operate
the tube (+1250V at 1 mA, -500V at I mA, and -330V at
90 mA for the voltage divider and typical focusing and

Ealignment coils).

Full-size scanning of the target should always be1used during operation. The blanking signal, a series of
negative-voltage pulses, should be supplied to the target to
prevent the electron beam from striking the target duringBretrace. In the event of scanning failure, the beam must
not reach the target.

1It is necessary to add a shading-correction signal,

of sawtooth shape and/or horizontal-scan frequency, to the
video signal after it has been clamped to obtain a uniformly

shaded picture.

lB SEE SAW* IMAGE CORRELATION TUBES

The ITT Industrial Laboratories announced the de-
velopment and commercial availability of a new type of
* Trademark applied for.
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electro-optical device, the See Saw image correlation tube.
For added flexibility in various application requirements
the See Saw image correlation tube is available in two dif-
ferent models. Type F4066 has a visual output presentation
whereas Type F4067 provides an electrical output signal.

The See Saw image correlation tube is essentially a
compact multi-channel computer, capable of automatically
generating an output signal directly proportional to a cross-
correlation integral between two consecutive input images.
An even more important feature of the See Saw image cor-
relation tube is that it has the ability of electronically de-
flecting one image across another image, generating a time-
varying output signal exhibiting a clearly defined peak for
the particular position of the two images for which maximum
cross correlation exists.

I HIGHLY CORRELATED IMAGES

IPOSITION FOR MAXIMUM
z IMAGE-TO-IMAGE CORRELATION00

IT PARTIALLY CORRELATED IMAGES
ow

DL UN-CORRELATED IMAGES
F-

Fig. 19 SIGNAL CORRELATION OF TWO IMAGES

The key internal component of the See Saw image
correlation tube is a composite storage mesh, similar to
the meshes used in IatronR and other direct view storage
tubes, consisting of metallic mesh upon which a thin insu-
lating layer is deposited. The first of the two input images
to be correlated is stored in the tube in terms of a charge
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Lpattern, generated at the input photocathode, focused by a

. magnetic field, and deposited on the insulator layer. The
I=B operating potentials of the tube are then shifted electronic-

ally such that photoelectrons from the photocathode, gen-
erated by the second input optical image to be correlated,
can no longer strike the insulator surface but are allowed
to partially penetrate or reflect from the mesh holes, de-
pending upon the magnitude of the stored charge pattern.

.DEFLECTION COILf~FOCUS COIL

El "___ __ _

El_ FIELD FREE DRIFT m 12 STAGE
I AND ELECTRON,,DEFLECTION SPACE MULTIPLIER

FIELD MESH Z-OUTPUT ANODE

r-PHOTOCATHODE \-STORAGE MESH
-COLL ECTOR

Fig. 20 TYPE F4067 SCHEMATIC

Since the charge pattern of the first image, g(x, y,
0, m) modulates the mesh transmission simultaneously on
a point-by-point basis for the incident electron pattern,
j(x+Ax, y+Ay, e+Ae, m+Am) of the second image, the tube
directly generates the desired cross-correlation function
image

f g(x, y, 6, m) j(x+Ax, y+Ay, 8+A9, m+Am) dx dy d9 dm
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for each individual set of values of the relative image dis-
placements, Ax, Ay, A8, and Am (9 and m are the image
rotation and magnification respectively). Deflection coils
are used to deflect the second image with respect to the
first, generating a maximum correlation signal when maxi-
mum correlation exists.

In many respects the See Saw image correlation tube
is the closest technological approach yet to a substitute for
the combination of human eye, optic nerve, and optical
nerve center of the brain. It will undoubtedly enjoy wide-
spread application for such pattern recognizing operations
as map reading, V/H sensing, document reading, etc.

Figure 21 gives an outline drawing and preliminary
specifications for the See Saw Correlation tubes, types
F4066 and F4067.

Image rotation and zoom are closely interrelated image
manipulations achievable over limited ranges in the image
correlation tube with appropriate non-uniform magnetic
fields. Design of the required coils is, at present, left
to the tube user.
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Preliminary Specifications

i(See Saw Image Correlation tubes,
types F4066 and F4067)

General Characteristics: F4066 F4067 Units

Photocathode type S-20 S-20

Wavelength of maximum response 4200 4200 Angstroms

Phosphor type P-20 -

Focus Magnetic Magnetic

Deflection Magnetic Magnetic

Typical Performance Characteristics:[(for typical operating conditions)

Threshold exposure 10"3  10"3  Fc • Sec

Number of resolvable elements 105  l05

Resolution (1000 line storage mesh) 20 20 line pairs/mm

Multiplier gain - 10

Photocathode luminous sensitivity 150 150 uA/jumen

Phosphor luminous efficiency 0. 35 - lumen/"A

Viewing screen brightness level 2 - millilamberts

1Typical Operating Conditions:

Overall voltage 3 kV

Write-correlate voltage shift 500 Volt

Magnetic focus field 100-500 Gauss

Mechanical Data:

-]7.25 IN - 9.68 IN

r- . 4.25 IN

3.00
1 IN 2.30 IN- IN .301 IN

D- _IN DIA 4 - -1.50 IN DIA- -I - -IN DIA - 1--- 1.50 IN DIA- -I

USEFUL USEFUL
USEFUL PHOTOCATHODE PHOTOCATHODE
PHOSPHOR F4066 AREA F4067 AREA
AREA

Fig. 21 CORRELATION TUBES OUTLINE DRAWINGS
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6. STAR SENSOR SYSTEMS

A fair number of systems concepts are adequately
described in the references given in the attendant listing.
Mappers as well as trackers are described in detail.

iTable 7 lists some of the factors influencing the
frame rate for imaging type star sensor systems. Figure
22 gives a curve illustrating the false alarm probability as

a function of sensor signal to noise ratio.

Table 7

LFactors Influencing Image Frame Time

* Limitations imposed by mechanical mirror scan systems

* Libration rate of the satellite

* Input signal level to the detector

9 Detector sensitivity

* Detector response time

0 Desired spatial resolution

0 Available transmitter RF power which has a direct
bearing upon system bandwidth
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Fig. 22 THE RELATION BETWEEN FALSE ALARM PROBABILITY AND

SIGNAL-TO-NOISE RATIO
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